ACAD-27 a) Ref. Clause(s): 9.1	Shri Ramdeol	Iss. No.: 01, Rev. No.: 00 Date of Rev: 01/01/2018			
Department: Electronics & Communications	Semester : Course Code: Course Name	Page: 01/01			
Programme: B.E.	Test: 1				Date of Exam: 18/05/2022
Max Marks: 15		Session: 2021-2022		Time: 1 Hour	

Instruction: All questions are compulsory

Q. No.		Marks	CO	EO
X	An AM signal has a peak unmodulated carrier voltage	05	CO 1	L2
	100 V with resistance 50 Ohm. By considering			
	modulation index 1, Estimate			
	1. The Carrier Power			
	2. Lower and Upper sideband Power			
	3. Total Sideband Power	different.		
	4. Total Power of AM Signal		58 N	
	5. Sketch the AM Power Spectrum	1.1		
2⁄	Illustrate the effect of White Noise in Double sideband	05	CO 2	L3
	Suppressed Carrier (DSBSC) Communication system			1.04
	with block diagram and mathematical details.			
3	The analog message signal is to be transmitted Using	05	CO 3	L3
100	PCM with a maximum error 0.001. The signal has			
1 Contraction	frequency of 100 Hz and amplitude range -10V to 10V.			
and and	Calculate			
	1. Step Size			
	2. Number of bits in each PCM Sample			
	3. Signal to Noise ratio in dB			
	4. Bit rate			
	5. Transmission bandwidth.			

ACAD-27 a)	Shri Ramdeobaba College of Engineering and	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1	Management,Nagpur -440013	Date of Rev: 01/01/2018
Department: EC	Semester : 4 th Shift: I/II Course Code: ECT257 Course Name: Analog Circuits	Page: 01/01
Programme: BE	Test: 1	Date of Exam: 19/05/2022
Max Marks: 15	Session: 2021-22	Time: 11:00 am – 12:00 noon

Question No.	Questions	Marks	CO	EO
	Derive the equations of input resistance for Voltage	8	CO1	L2
	series and Current shuft recuback topologies.			
2(a)	For dual input balanced output differential amplifier, derive the equations for dc analysis and	5	CO4	L2
	ac analysis.			
2(b)	The following specifications are given for single input unbalanced output: $R_c=2.2K\Omega$, $R_E=4.7 K\Omega$, $R_{in1}=R_{in2}=50\Omega$, $\pm V_{cc}=\pm 10V$ and the transistor is the CA3086 with $\beta_{ac}=\beta_{dc}=100$ and $V_{BE}=0.715V$ typical. Determine the I _{CO} and V _{CEQ} values.	2	CO4	L2

			01
Doc. No.: FY-ACAD-33(a) Clause No.: 9.1	Shri Ramdeobata College of Management, Nagpur	Engineering and - 440 013	Iss. No.: 01 Rev. No.: 00 Date of Rev.: 01/01/2018
Department: Physics	Name of Internal Exami Session: 2021-22 Semester [Electronics & Communicat	nation: TA-1 r: IV Sec-A&B tion Engineering]	Page 1/1
Course Code: PHT251 Course Name: Introduction to Electromagnetic Field		Date of Submission Timing: 10 am to 1 Duration: 1Hr.	1: 26 th April 2022

1 1

CO-1

		Marks
0. No.	Question	3
1 .	Transform the vector $10a_x$ to spherical coordinate at	
	P(x = -3, y = 2, z = 4)	4
2	The vector from the origin to point A is given as	
	$6\mathbf{a}_{\mathbf{x}}-2\mathbf{a}_{\mathbf{y}}-4\mathbf{a}_{\mathbf{z}},$	
	and unit vector directed from the origin towards point B is	1
	(2/3, -2/3, 1/3). If points A and B are 10 unit apart, find	
	coordinates of point B.	2
3	Find the normal vector to the surface defined in $2x^2y - 5z$ at	5
	point P(-4, 3, 6)	
1	A certain radiating antenna has radiation field	2
4	$20\cos^2 \varphi - \rho \sin^2 \varphi.$	
	Find the radial part of field.	
	Find	ך 3
5	Nextor G from origin to the midpoint of line joining	
	a) vector G from origin to the map a	
	A(2, -3, 5) and $D(0, -3, 5)$.	
i	b) The vector $C(-2,7,5)$ is given if the direction of R_{+2}	:
	component of RAB in the direction of RAC.	

Teacher: P R Gandhi & R.A. Nafdey

.

ACAD-27 a)	Shri Ramdeobaba College of Engineering and	Iss. No.: 01, Rev. No.: 00
Ref. Clause(s): 9.1	Management,Nagpur -440013	Date of Rev: 01/01/2018
Department: EC	Semester : IV Shift: A & B Course Code: ECT258 Course Name: Microprocessors	Page: 01/01
Programme: BE	Test: 1	Date of Exam: 17/05/22
Max Marks: 15	Session: 2021-22	Time: 1 hour

Instructions:

- 1. All questions are compulsory and carry marks as indicated.
- 2. Use of scientific calculator is allowed.
- 3. Assume suitable data where ever required.

Q1Remember and draw neat pin diagram and explain HOLD and status signal pins.3Co Co<	L1 L1 L2
explain HOLD and status signal pins.Q2Illustrate Implicit addressing mode and a indirect addressing mode with examplesQ3Clarify how an instruction is fetched and a secured with an example.Q4Use the knowledge of assembly language and write program to multiply two immediate bytes of data.	L2
Q2Illustrate Implicit addressing mode and indirect addressing mode with examples3Co Co Co Clarify how an instruction is fetched and executed with an example.3Co C	L2
Q3Clarify how an instruction is fetched and executed with an example.CC CO CO executed with an example.Q4Use the knowledge of assembly language and write program to multiply two immediate bytes of data.CC CO 	1.2
Q3Clarify how an instruction is fetched and executed with an example.3CCQ4Use the knowledge of assembly language and write program to multiply two immediate bytes of data.3CC	L2
executed with an example.Q4Use the knowledge of assembly language3and write program to multiply twoimmediate bytes of data.	
Q4 Use the knowledge of assembly language 3 CC and write program to multiply two immediate bytes of data.	
and write program to multiply two immediate bytes of data.	L3
immediate bytes of data.	
Infinediate by tes of auta.	
Q5 Use the knowledge of assembly language 3 CC	L3
and write program to convert the data byte to	
its Binary coded decimal representation and	
store the result as two separate nibbles.	

Doc. No.:			lss. No.: 01
FY-ACAD-33(a)	Shri Ramdeobaba College of	Rev. No.: 00	
	Management, Nagpur	Date of Rev.:	
Clause No.: 9.1		01/01/2018	
Department:	Name of Internal Examin	Page 1/1	
Physics	Session: 2020-21 Semester: N Communication Engineer		
Course Code: PHT251		Date of Exam: 17-5	-2022
Course Name: Introduction to Electromagnetic Theory		Timing:11.00 am to	a 12.00 noon
Maximum Marks: 1	5	Duration: 1 Hrs	

Note: 1] Assume suitable data wherever needed.

2] Neat and labelled diagram carry complete weightage.

Q. No.	Question	Marks	со	EO
1	A person seating in the air plane measures the field at point - (r = 5, θ = 20°, φ = -70°). What is its equivalent point in cartesian system?	1	1	. 2
2	The line charge density $\rho_L = 24 \text{ Y}^2 \text{ m C/m}$ is confined to y-axis. Find the total charge distributed on the y-axis when y = -5 to y = +5	2	2	2
3	What is scale factor? Obtain the scale factor for coordinate ϕ angle in spherical system.	2	1	1
4	Determine the equivalent vector field in spherical system for given vector $\mathbf{A} = 10 \mathbf{a}_{x}$, at point P(x=-3, y=2, z=4).	3	1	5
5	Certain charge distribution has flux density - $D = 8xyz^4 a_x + 16 x^2z^4 a_y + 16 x^2yz^3 a_z pC/m^2$. Find the volume charge density emitting the above flux.	3	2	4, 5
6	Solve the either side of divergence theorem for the surface bounded with $0 \le p \le 3$, $0 \le z \le 2$ radiating the D = $20p^2 a_p nC/m^2$ flux and hence obtain the charge enclosed by the closed surface.	4	2	4, 5

Teacher: R.A. Nafdey & P R Gandhi

ACAD Ref. Cla	-27 a) use(s): 9.1	Shri Ramdeobaba College of Engineering and Management, Nagpur - 440013	Iss. No.: 0	, Rev. No.	.: 00
Depart	ment: EC	Semester : IV Section: A & B Course Code: ECT259 Course: Probability Theory & Stochastic Processes	Page: 01/01		
Progra	ramme: BE Class Test 1 Date of Example		Exam:		
(EC)	Andres 15	Section: 2021 22	20-05-2022 Time: (1 Hr)		
	18/183; 13	Session: 2021-22	11.00 an	-12.00	8008
Que No.		Questions	Marks	CO	EO
Q. 1	A tow indeper availab probabi needed	2	C01	L2	
Q. 2	The od three in respect reviews	2 • 60	со1 93	L2	
Q. 3	The cha of a con that the if A, B 0.8 res introdu appoint	inces of A, B and C becoming the General Manager mpany are in the ratio $4:2:3$. The probabilities bonus scheme will be introduced in the company and C become General Manager are 0.3, 0.7 and spectively. If the bonus scheme has been ced, what is the probability that A has been ted as General Manager? = $6/2.5 = 0.24$	4	C05	L4
Q. 4	A R.V. i) E[X]	X has the PDF $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Compute ii) $P\left(X > \frac{3}{4}/X > \frac{1}{2}\right) = \frac{7}{12}$	2	CO5	L3
Q. 5	If X and <i>P(x,</i> Evaluat a) <i>P(</i> b) <i>P(</i> c) <i>P(</i>	Y are two random variables with joint PMF as y = k(2x + 3y), $x = 0, 1, 2$. and $y = 1, 2, 3$. We the marginal and conditional distributions for $(X = 2, Y \le 2) = \frac{17}{72} = 0.2361$ $(X \le 1/Y \le 2) = 22/39 = 0.5641$ (X = 0/Y = 2) = 74 = 0.25	3	C05	L5
Q. 6	The pro probabi times.	bability of man hitting a target is $\frac{1}{4}$. Deduce the lity of hitting the target exactly twice, if he fires 7 = 0.31146	2	CO5	L3

Doc. No.:			Iss. No.: 01	
ACAD-27(a)	Shri Ramdeobaba College of	Shri Ramdeobaba College of Engineering and		
	Management, Nagpur - 440 013		Date of Rev.:	
Clause No.: 9.1		01/01/2018		
			Page 1/1	
Department:	Name of Internal Examin	ation: lest-2	1060 -/ -	
Physics	Session: 2020-21 Semester: IV [Electronics and Communication Engineering] Sec-A&B			
,.				
Course Code: PHT25	51	Date of Exam: 13-7-2	022	
Course Name: Introduction to Electromagnetic Theory		Timing:12.00 pm to 1	.00 pm	
Maximum Marks: 1	5	Duration: 1 Hrs		

Note: 1] Assume suitable data wherever needed.

2] Neat and labelled diagram carry complete weightage.

3] Attempt Q.no. 1 OR 2, Q. no. 3 OR 4, Q. no. 5 OR 6. Q no 7 OR 8

Q. No.	Question	Marks	со	EO
1	A current carrying element IdL = 10^{-4} (4, -3, 1) A.m is at point C (5, -2, 3) produces a field dH at P (4, -1, 2). a) Specify the direction of dH by a unit vector a_H b) Find dH .	4	3	2
2	Let $\varepsilon = 10^{-5}$ F/m, $\mu = 4x10^{-9}$ H/m, and $\rho_v = 0$, $\sigma = 0$. Find 'k', so that each pair of fields satisfies Maxwell's equations: (a) H = 6 $a_x - 2y a_y + 2z a_z A/m$, D = kx $a_x + 10y a_y - 25z a_z nC/m^2$ (b) H = (20y+kt) $a_x A/m.s$, E = (y+2x 10 ⁶ t) $a_z V/(m.s)$	4	3	3
3	Explain how EM wave is a uniform plane wave.	3	4	1
La	The magnetic field intensity is given in a certain region of space $H = \frac{x+2y}{x^2} a_y + \frac{2}{x} a_z \qquad A/m$ a) Find Curl of H for this field. b) Find J at point P (1,1,1).	3	4	2
5	Three current sheets $1.5\pi a_y A/m$ at x=6mm, $-3\pi a_y A/m$ at x=9mm and $1.5\pi a_y$ at x= -12mm. Find the magnetic field strength H at origin.	3	4	3
6	State Ampere circuital law and give its significance.	3	3	1
7	State what is phasor and Derive vector Helmholtz Equation for conducting medium?	5	4	2
8	Give the significance of displacement current with reference to propagations of ac field through capacitor.	5	3	2

Teacher: R A Nafdey & P R Gandhi

Ref. Clause(s): 9.1 Department: Electronics & Communications Programme:	Shri Ramdeobaba College of Engineering and Management, Nagpur -440013 Semester : IV Shift: Second Course Code: ECT 256 Course Name: Analog & Digital Communication	Iss. No.: 01, Rev. No.: 00 Date of Rev: 01/01/2018 Page: 01/01
B.E.	Test: 2	Date of Exam: 14/07/2022
Max Marks: 15	Session: 2021-2022 Time: 1 Hour	

Instruction: All questions are compulsory

and is

Q. No.				
1	A Convolution Code is described by the	Marks	CO	EO
-	$X_1 = [1 0 1]; X_2 = [1 1 1];$	05	CO4	14
	If the received sequence for above encoder is 100111, decode the			
	sequence using Viterbi decoding algorithm.			
2	Draw the block diagram for OPSK Transmitter			
	e and for grock transmitter.	05	CO4	L2.L3
	Sketch waveforms for QPSK Transmitter output if input is 10010110			,
3	Derive an expression for Signal to Nation Parts			
	of error for Phase shift keying.	05	CO5	L2

ACAD-27 a)	Shri Ramdeobaba College of Engineering and	Iss. No.: 01, Rev. No.: 00 Date of Rev:
Ref. Clause(s): 9.1	Management, Nagpur -440015	01/01/2018
Department: EC	Semester : IV Section : A & B Course Code:ECT258	Page: 01/01
Programme: BE	Test: 2	Date of Exam: 13/07/2022
Max Marks: 15	Session: 2021-22	Time 3:00 to 4 :00 pm (1 hour)

Instructions:

ALL QUESTION CARRY MARKS AS INDICATED ALL QUESTIONS ARE COMPULSORY

Question	Questions	Marks	CO	EO
<u>No.</u> Q. <i>k</i>	Organize the instruction STA 9000h by drawing the timing diagram and explain it in detail.	05	CO3	L3
Q.2	Interface a common cathode seven segment display to the microprocessor at port address E0H. Write a program to count from 0 to 9 with a delay of 0.5sec between each count. Display the count on the seven segment display.	06	CO3,4	L4
Q3.	Explain addressing modes of 8086 with examples.	04	CO2	L2

		Icc. No : 01.
ACAD-27a	Shri Ramdeobaba College of Engineering and	Rev. No.: 00
Ref. Clause(s): 9.1	Management,Nagpur -440013	Date of Rev: 01/01/2018
Department: EC	Semester : 4 th Shift: I/II Course Code: ECT257 Course Name: Analog Circuits	Page: 01/01
Programme: BE	Test: 2	Date of Exam: 15/07/2022
Max Marks: 15	Session: 2021-22	Time: 12:00 noon – 1:00 pm

Note: Solve any three					
Question No.	Questions	Marks	CO	EO	
1	For Schmitt trigger circuit, determine threshold voltages V_{UT} and V_{LT} . Draw the hysteresis curve. Assume saturation voltage of ± 12 V, $R_1 = 2$ k Ω and $R_2 =$ 4 k Ω . Derive the necessary expression used.	05	CO4	L2	
2	Design a MMV using IC 555 with $tp = 250$ ms. Sketch the expected output waveform when external trigger is applied.	05	CO5	L3	
3	Explain the class A transformer coupled power amplifier with the help of neat circuit diagram. Derive its efficiency.	05	CO3	L2	
- 4	Derive the formula of frequency of operation of Colpitt oscillator.	05	CO3	L2	

ACAD-27 a)				
	Shri Ramdeobaba College of Engineering and Managering			Iss. No.: 01, Rev. No.:
Ref. Clause(s): 9.1		esticate of Engineering and w	ianagement, Nagpur -13	Date of Rev: 01/01/2
Department: ECE	Semester : IV Section: A and B Course Code: ECT 259 Course Name: Probability Theory and Stochastic Processes			Page: 01/01
Programme: B. Tech.		Test: 2		Date of Exam: 16/07/2022
Max Marks:15		Session: 2021-22	Time:	1HOUR

Instructions: 1. Each Question carries marks as indicated.

- 2. Assume suitable data wherever necessary.
- 3. Use of standard normal distribution table is permitted.
- 4. All questions are compulsory.

One	Description		
No	Description	Marks	COs
140.			Map
01			ped
Q.1	Suppose that number of customers visiting an ice-cream shop is a	2	CO1,
	random variable with mean 40. Calculate the probability that number of		CO5
	customers visiting the shop will exceed 60.		
Q. 2	Computers from a particular company are found to last on an average	2	CO1,
	for 3 years without any hardware malfunction with standard deviation		CO3
	of two months. At least what percentage of the computers will last		
	between 31 months and 41 months?		
Q. 3	Consider a Random Process $\{X(t), t \in \mathbb{R}\}$ defined as	2	CO2,
	$X(t) = A \cos(w_{t} t + \phi)$ where ϕ is Uniformly distributed i.e.		CO4
	$\phi \sim U(0, 2\pi)$ A and an analysis of a control in the Normal Network (With		
	ψ		
0.4	A normally distributed IO error have a many of 100 and the last		
2. *	A normally distributed IQ score have a mean of 100 and standard	3	CO3,
	What is the method ility of method local and and a stable to answer following questions:		CO5
	what is the probability of randomly selecting someone with an IQ score		
	a) less than 80		
	b) greater than 136		
	c) between 95 and 110		
05	A contain group of welfare registeres could be a fits of \$110 and	_	600
Q.5	A certain group of weifare recipients receives SNAP benefits of \$110 per	2	CO3,
	week with a standard deviation of \$20. If a random sample of 25 people		COS
	is taken, Using CLI, find the probability that their mean benefit will be		
	greater than \$120 per week?		
Q.6	A random process X(t) having auto-correlation function	4	CO4
	$\mathbf{R}_{m}(\mathbf{\tau}) = \mathbf{e}^{-4 \mathbf{\tau} }$ is applied as input to the ITI system with impulse		
	K_{XX} (t) = c is applied as input to the EIT system with impulse		
	response $\mathbf{n}(t) = \mathbf{e}^{-t} \mathbf{u}(t)$.		
	Find the PSD $S_{\gamma\gamma}(\omega)$ of output $Y(t)$.		
		1	· .